Chapter 4 section 1 Equivalent fractions

Vocabulary:

fraction: form: $\frac{a}{b}$ numerator: a denominator: b

Equivalent Fractions - represent the same numerical value Visualization

	1	2
Visualization of equivalent fractions:	-=	—
1	3	6

Notice that if start with fraction, $\frac{1}{3}$ and multiply both numerator and denominator by 2

 $\frac{1}{3} = \frac{1 \cdot 2}{3 \cdot 2}$ the results is $\frac{2}{6}$

Create equivalent fractions:

Start with a fraction, then multiply both its numerator and denominator by same number, the resulting fraction is equivalent to the original fraction

$$\frac{a}{b} = \frac{a \cdot x}{b \cdot x}$$

The revers is also true. Instead of multiplying, one can divide.

 $\frac{2}{6} = \frac{2 \div 2}{6 \div 2}$, the results is $\frac{1}{3}$

Divisor, factor 36 is divided by 4, remainder of 0, therefore 4 is a divisor of 36, 4 is a factor of 36 25 is divided by 4, remainder is not zero, therefore 4 is not a divisor of 25, 4 is not a factor of 25.

Divisors 18: 1, 2, 3,6, 9 18 24: 1, 2, 3, 4, 6, 8, 12, 24 Common divisors: 1, 2, 3, 6 Greatest common factor (GCF): 6

Reduce fractions to lowest terms:

A fraction is reduced to lowers terms if the GCF = 1

Reduce: $\frac{18}{24}$ The GCF between 18 and 24 is 6, so divide by 6 $\frac{18 \div 6}{24 \div 6}$ $\frac{3}{4}$ Or factor 6 is a divisor 6 is a factor

 $\frac{18}{24} = \frac{3 \cdot 6}{4 \cdot 6}$

Use a factor tree to find the prime factors of 18 and 24

 $\frac{18}{24} = \frac{2 \cdot 3 \cdot 3}{2 \cdot 2 \cdot 2 \cdot 3}$ reduce $\frac{3}{4}$

Reduce fractions with variables $\frac{56x^2y}{60xy^2}$

Equivalent fractions in higher terms.

$\frac{3}{5}$ with a denominator of 20

Negative fractions placement of negative sign

$$\frac{3}{-5} = \frac{-3}{5} = -\frac{3}{5}$$

Practice

1) 18	$54x^3y^3$	$50x^{3}$	$(-12xy^2)$
$\frac{1}{20}$	$\frac{2}{60xy^2}$	$-75x^{5}$	$\frac{4J}{-18x^2y}$