Chapter $4 \sec 2,3$
Multiplying, Dividing Fractions
Fractions: Value of one:
Numerator and denominator have the same value
$\frac{5}{5} \quad \frac{p i e}{\text { pie }}$
What is the value of a fraction when it is multiplied by 1 ?

Division of fractions:
$\frac{a}{b} \div \frac{c}{d}$
$\frac{a}{b} \cdot \frac{d}{c}$
Change the division to multiply and take the reciprocal of the second fraction.
$\frac{1}{2} \div \frac{3}{5}$
$3 \div \frac{2}{3}$
$-\frac{6}{35} \div\left(\frac{33}{55}\right)$
$\frac{-6}{x} \div\left(\frac{-12}{x^{2}}\right)$

Now that the problems becomes a multiplication problem.
$\frac{a}{b} \cdot \frac{c}{d}$
$\frac{a \cdot c}{b \cdot d}$ multiply the tops and bottoms.
multiply and reduce
$\frac{3}{4} \cdot \frac{8}{9}$
multiply and cancel
$\frac{18}{30} \cdot \frac{35}{6}$
$\frac{18 \cdot 35}{30 \cdot 6}$
$\frac{2 \cdot 3 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 2 \cdot 3 \cdot 3 \cdot 5}$

Practice:
$\frac{6}{35} \cdot \frac{70}{36} \quad \frac{6 a}{15 x} \cdot\left(-\frac{35 x^{2}}{10 a^{2}}\right) \quad \frac{3 x}{-2} \cdot \frac{6}{21 x^{3}}$

Parallelogram - Area

base and height
A = bh
triangle - Area

$A=\frac{1}{2} b h$
practice
Parallelogram
base 8 cm , height 9 cm
triangle
base 8 cm , height 6 cm

